Outline. Definitions Descriptive vs. Inferential Statistics The ttest  Onesample ttest


 Colleen Randall
 5 years ago
 Views:
Transcription
1 The ttest
2 Outline Definitions Descriptive vs. Inferential Statistics The ttest  Onesample ttest  Dependent (related) groups ttest  Independent (unrelated) groups ttest
3 Comparing means Correlation and regression look for relationships between variables Tests comparing means look for differences between the means of two or more samples General null hypothesis: the samples come from the same population General research hypothesis: the samples come from different populations
4 Choosing a statistical test: normality There are two sets of statistical tests for comparing means: Parametric tests: work with normally distributed scale data Nonparametric tests: used with not normally distributed scale data and with ordinal data
5 Choosing statistical tests: how many means? Within parametric and nonparametric tests some work with just two means others work with more than two means
6 Choosing statistical tests: research design Most statistical tests have at least two versions: one for related (withinsubjects, repeated measures) design and one for unrelated (between subjects) designs
7 The ttest Parametric: works on normally distributed scale data Compares TWO means There are different versions for different designs
8 Types of ttest One sample: compare the mean of a sample to a predefined value Dependent (related) samples: compare the means of two conditions in which the same (or closely matched) participants participated Independent (unrelated) samples: compare the means of two groups of participants
9 Beer and Statistics: A Winning Combination! William Sealy Gosset ( ) Famous as a statistician, best known by his pen name Student and for his work on Student's tdistribution. Hired by Guiness to find a cheap way of monitoring stout quality
10 THE ONESAMPLE TTEST
11 The One Sample t test The Onesample t test is used to compare a sample mean to a specific value (e.g., a population parameter; a neutral point on a Likerttype scale, chance performance, etc.). Examples: 1. A study investigating whether stock brokers differ from the general population on some rating scale where the mean for the general population is known. 2. An observational study to investigate whether scores differ from chance. Calculation of t : t = mean  comparison value Standard Error
12 The standard error: SE = SD N The standard error (SE) is the standard deviation of the sampling distribution: An estimate of the error in the estimation of the population mean We use the sample mean to estimate the population mean This estimate may be more or less accurate If we have a large number of observations and all of these observations are close to the sample mean (large N, small SD), we can be confident that our estimate of the population mean (i.e., that it equals the sample mean) is fairly accurate => small SE If we have a small number of observations and they vary a lot (small N, large SD), our estimate of the population is likely to be quite inaccurate => large SE
13 The onesample t formula M: the mean of our sample the population mean (or any parameter we want to compare our mean to) SD: the sample standard deviation N: sample size
14 Hypothesis testing with t We can draw a sampling distribution of tvalues (the Student t distribution) this shows the likelihood of each tvalue if the null hypothesis is true The distribution will be affected by sample size (or more precisely, by degrees of freedom) We evaluate the likelihood of obtaining our tvalue given the t distribution Degrees of freedom (df): The number of values that are free to vary if the sum of the total is given With one sample, df = N  1
15 Assumptions The onesample t test requires the following statistical assumptions: 1. Random and Independent sampling. 2. Data are from normally distributed populations. Note: The onesample t test is generally considered robust against violation of this assumption once N > 30.
16 SPSS Output degrees of freedom = N1 The value to which you compare your sample mean
17 An example: Katz et al 1990 SAT scores without reading the passage (SATpassage.sav) Research hypothesis: students do better than chance Null hypothesis: students perform at chance level Chance: 20 (100 questions with 5 choices each) Run the test
18 Writing up the results Katz et al. (1990) presented students with exam questions similar to those on the SAT, which required them to answer 100 fivechoice multiplechoice questions about a passage that they had presumably read. One of the groups (N = 28) was given the questions without being presented with the passage, but they were asked to answer them anyway. A second group was allowed to read the passage, but they are not of interest to us here. If participants perform purely at random, those in the NoPassage condition would be expected to get 20 items correct just by chance. On the other hand, if participants read the test items carefully, they might be able to reject certain answers as unlikely regardless of what the passage said. A onesample t test revealed that participants in the NoPassage condition scored significantly above chance (M = 46.57, t(27) = 20.59, p <.001).
19 PAIRED SAMPLES TTEST
20 Repeated Measures Designs Also called a withinsubject or related or paired design Entire experiment is conducted within each subject/participant Each individual participates in each condition of the experiment Repeated measurements on dependent variable
21 Repeated Measures Designs Why Use This Design: Don t have to worry about balancing individual differences across conditions of the experiment (because all participants are in each condition) Require fewer participants Convenient and efficient More sensitive
22 Pairedsamples t test t = mean  comparison value Standard Error Mean value: mean difference between scores in the two conditions Comparison value: 0, because we expect no difference if the IV manipulation has no effect Standard Error: standard error of the differences i.e.: estimate of accuracy of the mean difference measured in the sample when it is used to estimate the mean difference in the population
23 Sampling distribution of mean differences Central Limit Theorem Revisited. We can plot the mean difference between two scores of a random sample. The plot will approach a normal distribution. It s standard deviation will be the SS of the deviation of each difference score from the mean difference divided by N 1. A distribution of mean differences between scores.
24 Standard Error of mean differences If mean differences can have a distribution The distribution will have a Standard Error SD D ( D M N 1 D ) 2 SSD N 1 SE D SD D N
25 Calculating OneSample t and PairedSamples t Statistics Single Sample t Statistic Paired Sample t Statistic SD ( X M ) N 1 SD SE N ( M ) t SE 2 SS N 1 Standard Error of a Sample t Statistic for Single Sample t Test Standard Deviation of a Sample t SD D ( M D D) SE D ( D M N 1 ) 2 Standard Deviation of Sample Differences SE D SD D N D SSD N 1 Standard Error of Sample Differences T Statistic for PairedSample t Test I (mean difference divided by SE)
26 Paired Sample t Test Example We want to know if there is a difference in the salary for the same job in Boise, ID, and LA, CA. The salary of 6 employees in the 25 th percentile in the two cities is given. Profession Boise Los Angeles Executive Chef 53,047 62,490 Genetics Counselor 49,958 58,850 Grants Writer 41,974 49,445 Librarian 44,366 52,263 School teacher 40,470 47,674 Social Worker 36,963 43,542
27 Paired Sample t Test Example We need to know if there is a difference in the salary for the same job in Boise, ID, and LA, CA. Step 1: Define Pops. Distribution and Comparison Distribution and Assumptions Pop. 1. Jobs in Boise Pop. 2.. Jobs in LA Comparison distribution will be a distribution of mean differences, it will be a pairedsamples test because every job sampled contributes two scores, one in each condition. Assumptions: the dependent variable is scale, we do not know if the distribution is normal, we must proceed with caution; the jobs are not randomly selected, so we must proceed with caution
28 Paired Sample t Test Example Step 2: Determine the Characteristics of Comparison Distribution (mean difference, standard deviation of difference, standard error) M difference = Sum of Squares (SS) = 5,777, SD D SSD N 1 5,777, SE D SD D N Profession Boise Los Angeles XY D (XY)M D^2 M = Executive Chef 53,047 62,4909,4431, ,336, Genetic Counselor 49,958 58,8508, , Grants Writer 41,974 49,4457, , Librarian 44,366 52,2637, School teacher 40,470 47,6747, , Social Worker 36,963 43,5426,579 1, ,783,115.11
29 Paired Sample t Test Example Step 3: Determine Critical Cutoff df = N1 = 61= 5 t statistic for 5 df, p <.05, twotailed, are and Step 5: Calculate t Statistic t ( M D D) SE D ( ) Step 6 Decide
30 Exercise: selfhelpbook.sav A researcher is interested in assessing the effectiveness of a selfhelp book ( Men are from Mars, Women are from Venus ) designed to increase relationship happiness. 500 participants read both the selfhelp book and a neutral book (statistics book). Relationship happiness is measured after reading each book. The order in which the books are read in counterbalanced and there is a six month delay between the two. (selfhelpbook.sav)
31 Effect sizes Cohen s d r d = M 2 M 1 SD 1 r 2 = t2 t 2 + df SD 1 : SD of the control group or control condition Pooled SD can be used instead: SD ( N 1 2 1) SD1 ( N 2 1) SD N1 N Can be misleading because it is influenced by sample size But the problem of what SD to use is avoided, and the results will be between 0 and 1 Shows the size of the difference in standard deviations
32 Reporting the results The relationship happiness of 500 participants was measured after reading Men are from Mars, Women are from Venus and after reading a statistics book. On average, the reported relationship happiness after reading the selfhelp book (M = 20.2, SE =.45) was significantly higher than in the control condition (M = 18.49, SE =.40), t(499) = p <.01. However, the small effect size estimate (r 2 =.01) indicates that this difference was not of practical significance. You could report SD or confidence intervals instead of SE
33 The Independent Groups t test: Betweensubjects designs Participants contributing to the two means come from different groups; therefore, each person contributes only one score to the data. t ( M M ) 1 2 comparisonvalue SE M2 M1: the difference between the means of the two groups Comparison value: the expected difference between the two means, normally 0 under the null hypothesis SE: standard error of the distribution of differences between means
34 Independent t Test PairedSample Two observations from each participant The second observation is dependent upon the first since they come from the same person. Comparing the mean of differences to a distribution of mean difference scores Independent t Test Single observation from each participant from two independent groups The observation from the second group is independent from the first since they come from different subjects. Comparing the difference between two means to a distribution of differences between mean scores.
35 Sampling distribution of differences between means Take two samples from a population, calculate the difference between their means Take another two samples, calculate the difference between their means Do this a few hundred times and then plot the frequency distribution of the differences: you get a sampling distribution of differences between means
36 Standard Error: Applied to Differences We can extend the concept of standard error to situations in which we re examining differences between means. The standard error of the differences estimates the extent to which we d expect sample means to differ by chance alone it is a measure of the unsystematic variance, or variance not caused by the experiment. SE DM = SD SD 2 2 N 1 N 2
37 The formula When sample sizes are equal: t = M 1 M 2 2 SD 1 + SD 2 2 N 1 N 2 When sample sizes are not equal, the variances are weighted by their degrees of freedom, the same way as in a pooled SD for Cohens s d: SD p 2 ( N 1 2 1) SD1 ( N 2 1) SD N 1 N t M SD 1 2 p N1 M SD N 2 p 2 2
38 Equal variances There are two ways of calculating the significance value for t for unrelated samples Equal variances assumed: when the variances of the two sets of scores are approximately equal Equal variances not assumed: when the two variances are quite different Testing the equality (homogeneity) of variances: Levene s test (SPSS automatically calculates it)
39 Degrees of freedom: N N 2 1 (the degrees of freedom of the two groups added together)
40 Example: SATpassage.sav The SAT performance of the group of students who did not read the passage was compared to the performance of a group of students who did read the passage. Look at distributions. Outliers? Draw graph.
41 Plotting the results
42 SPSS Output: IndependentGroups t test Look at Levene s test first: If significant (p <.05), the variances of the two samples are not equal and a correction must be applied. What would it mean if the confidence interval included 0?
43 Calculating Effect Size: Independent Samples t test d = M 2  M 1 SD 1 d = = 3.58
44 Reporting the Results The SAT performance of the group of students who did not read the passage (N = 28) was compared to the performance of a group of students who did read the passage (N = 17). An independent samples t test revealed that the students who read the passage had significantly higher scores (M = 71.06, SD = 11.06) than the Nopassage group (M = 46.57, SD = 6.83), (t(43) = 9.21, p <.001). While people may show better than chance performance without reading the passage, their scores will not approximate the scores of those who read the passage. This effect was very large (Cohen s d = 3.58). You could report SE or confidence intervals instead of SD
45 A note on problems If the data Are not quite normally distributed or Have outliers The simplest solution is to use bootstrapped confidence intervals Look at the confidence intervals of the difference between the groups/conditions (this should not include 0) and The confidence intervals of the means of the two groups/conditions (these should not overlap)
46 Homework 1: Word Recall Participants recalled words presented with or without pictures. The researchers used counterbalancing: each participant saw words both with and without pictures. Run descriptives, check normality, check for outliers Draw graph Run appropriate ttest Calculate effect size Write up the results
47 Homework 2: Lucky charm Damish et al (2010): Does a lucky charm work? (Howell Table 14.3) Participants bring lucky charm and play a memory game: picture cards are turned face down, participant has to find the pairs buy turning one card at a time. One group has the lucky charm with them when doing the test. Other group has to leave the charm in another room. Dependent variable: how fast participants finished relative to a baseline (low score = better performance) Hypothesis? Significance level? Tails? Descriptives, outliers, graphs Run appropriate ttest Calculate effect size Write it up
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationSCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationTwo Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
More informationSPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationChapter 2 Probability Topics SPSS T tests
Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the OneSample T test has been explained. In this handout, we also give the SPSS methods to perform
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationAnalysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Betweensubjects manipulations: variable to
More informationChapter 7. Comparing Means in SPSS (ttests) Compare Means analyses. Specifically, we demonstrate procedures for running DependentSample (or
1 Chapter 7 Comparing Means in SPSS (ttests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures
More informationTesting for differences I exercises with SPSS
Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the ttest and its nonparametric equivalents in their various forms. In SPSS, all these tests can
More informationHYPOTHESIS TESTING WITH SPSS:
HYPOTHESIS TESTING WITH SPSS: A NONSTATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER
More informationUNDERSTANDING THE DEPENDENTSAMPLES t TEST
UNDERSTANDING THE DEPENDENTSAMPLES t TEST A dependentsamples t test (a.k.a. matched or pairedsamples, matchedpairs, samples, or subjects, simple repeatedmeasures or withingroups, or correlated groups)
More informationTwosample inference: Continuous data
Twosample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with twosample inference for continuous data As
More informationExamining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish
Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)
More informationUNDERSTANDING THE INDEPENDENTSAMPLES t TEST
UNDERSTANDING The independentsamples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
More informationOpgaven Onderzoeksmethoden, Onderdeel Statistiek
Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week
More informationChapter 9. TwoSample Tests. Effect Sizes and Power Paired t Test Calculation
Chapter 9 TwoSample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and TwoSample Tests: Paired Versus
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationTesting Group Differences using Ttests, ANOVA, and Nonparametric Measures
Testing Group Differences using Ttests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 354870348 Phone:
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationReporting Statistics in Psychology
This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different
More informationTwosample hypothesis testing, II 9.07 3/16/2004
Twosample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For twosample tests of the difference in mean, things get a little confusing, here,
More informationstatistics Chisquare tests and nonparametric Summary sheet from last time: Hypothesis testing Summary sheet from last time: Confidence intervals
Summary sheet from last time: Confidence intervals Confidence intervals take on the usual form: parameter = statistic ± t crit SE(statistic) parameter SE a s e sqrt(1/n + m x 2 /ss xx ) b s e /sqrt(ss
More informationresearch/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other
1 Hypothesis Testing Richard S. Balkin, Ph.D., LPCS, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationTHE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationIndependent t Test (Comparing Two Means)
Independent t Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent ttest when to use the independent ttest the use of SPSS to complete an independent
More informationThe Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
More informationPart 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217
Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing
More informationPsychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
More informationProjects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
More informationCALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 15 scale to 0100 scores When you look at your report, you will notice that the scores are reported on a 0100 scale, even though respondents
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More information7. Comparing Means Using ttests.
7. Comparing Means Using ttests. Objectives Calculate one sample ttests Calculate paired samples ttests Calculate independent samples ttests Graphically represent mean differences In this chapter,
More informationUsing Excel for inferential statistics
FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied
More informationTutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrclmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More information12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
More informationResearch Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
More informationOverview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
More informationUNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)
UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design
More informationConsider a study in which. How many subjects? The importance of sample size calculations. An insignificant effect: two possibilities.
Consider a study in which How many subjects? The importance of sample size calculations Office of Research Protections Brown Bag Series KB Boomer, Ph.D. Director, boomer@stat.psu.edu A researcher conducts
More informationAnalysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk
Analysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationTTESTS: There are two versions of the ttest:
Research Skills, Graham Hole  February 009: Page 1: TTESTS: When to use a ttest: The simplest experimental design is to have two conditions: an "experimental" condition in which subjects receive some
More informationLecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
More informationEPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeatedmeasures data if participants are assessed on two occasions or conditions
More informationChapter 7 Section 7.1: Inference for the Mean of a Population
Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationDifference tests (2): nonparametric
NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationTHE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKALWALLIS TEST: The nonparametric alternative to ANOVA: testing for difference between several independent groups 2 NON
More informationIntroduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More informationSPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stemandleaf plots and extensive descriptive statistics. To run the Explore procedure,
More informationDescribing Populations Statistically: The Mean, Variance, and Standard Deviation
Describing Populations Statistically: The Mean, Variance, and Standard Deviation BIOLOGICAL VARIATION One aspect of biology that holds true for almost all species is that not every individual is exactly
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationStatistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl
Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 Oneway ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
More informationMath 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
More informationTHE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS. Fall 2013
THE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING 1 COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS Fall 2013 & Danice B. Greer, Ph.D., RN, BC dgreer@uttyler.edu Office BRB 1115 (903) 5655766
More informationSTA201TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA201TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationComparing the Means of Two Populations: Independent Samples
CHAPTER 14 Comparing the Means of Two Populations: Independent Samples 14.1 From One Mu to Two Do children in phonicsbased reading programs become better readers than children in whole language programs?
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More informationUNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More informationNonparametric TwoSample Tests. Nonparametric Tests. Sign Test
Nonparametric TwoSample Tests Sign test MannWhitney Utest (a.k.a. Wilcoxon twosample test) KolmogorovSmirnov Test Wilcoxon SignedRank Test TukeyDuckworth Test 1 Nonparametric Tests Recall, nonparametric
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationUnit 26: Small Sample Inference for One Mean
Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationPermutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. JaeWan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
More informationChapter 7. Oneway ANOVA
Chapter 7 Oneway ANOVA Oneway ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The ttest of Chapter 6 looks
More informationSimple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
More informationOneWay Analysis of Variance
OneWay Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More informationNONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of pvalues classical significance testing depend on assumptions
More informationInference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationOneWay ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate
1 OneWay ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,
More informationNormality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com
More informationTwosample ttests.  Independent samples  Pooled standard devation  The equal variance assumption
Twosample ttests.  Independent samples  Pooled standard devation  The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More informationChicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
More information